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Abstract

We present a continuum model for thermally induced volume transitions in stimulus—responsive hydrogels (SRHs).
The framework views the transition as proceeding via the motion of a sharp interface separating swollen and collapsed
phases of the underlying polymer network. In addition to bulk and interfacial force and energy balances, our model
imposes an interfacial normal configurational force balance. To account for the large volume changes exhibited by
SRHs during actuation, the governing equations are developed in the setting of finite-strain kinematics. The numerical
approximations to the coupled thermomechanical equations are obtained with an extended finite element/level-set
method. The solution strategy involves a non-standard operator split and a simplified version of the level-set update.
A number of representative problems are considered to investigate the model and compare its predictions to experimen-
tal observations. In particular, we consider the thermally induced swelling of spherical and cylindrical specimens. The
stability of the interface evolution is also examined.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A hydrogel is a cross-linked macromolecular network immersed in a solvent. Stimulus-responsive
hydrogels (SRHs) are synthesized to exhibit large reversible volume transitions (~1000%) in response to
changes in external stimuli such as pH, temperature, solvent concentration, light, and magnetic field.
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The actuation time for an SRH specimen scales with the square of characteristic linear dimension of that
specimen. At the microscale, actuation times on the order of milliseconds are possible. SRHs have already
been used in a wide range of applications from micro-fluidic sensors/actuators, to optical switches, to
pumps/carriers of therapeutic drugs in the bloodstream. As applications utilizing SRHs continue to emerge,
models that reliably predict their response and provide insight into structure-property-response relation-
ships are needed.

In this paper we focus attention on the swelling kinetics of temperature-responsive hydrogels, such as
those based on poly(N-isopropylacrylamide) (PNIPA). As the temperature is increased past a lower critical
solution temperature (typically around 33 °C), PNIPA gels decrease their volume dramatically as the
underlying polymer network transforms from a swollen state to a collapsed state. The process is reversible;
decreasing the temperature gives rise to a large volume expansion. This volume transition is also associated
with the uptake and expulsion of solvent; in a collapsed state the polymer chains are hydrophobic, while in
a swollen state they are hydrophilic.

Most of the models proposed to describe this process invoke the collective diffusion assumption pro-
posed by Tanaka and Fillmore (1979), an assumption in which the motion of the polymer network is coun-
terbalanced by the generation of stress as well as a drag force between the network and the solvent. Recent
experimental observations by Olsen et al. (2000), however, display the motion of a sharp front separating
swollen and collapsed phases.

Motivated by these observations, Dolbow et al. (2004) developed a sharp-interface theory for chemically
induced volumetric transitions in hydrogels. In contrast to mixture theories that are commonly employed to
describe SRH kinetics, our theory employs a chemical potential field to describe solute transport and
implicitly accounts for the change in solute concentration across the sharp phase interface. A detailed der-
ivation of the theory and the numerical strategy developed to attain approximate solutions to representative
boundary value problems was recently presented by Dolbow et al. (in press). In our previous efforts, atten-
tion was confined to isothermal circumstances. In the work described here, we consider the coupled effects
of thermal transport and force balance in the context of a sharp interface theory for SRH kinetics. We view
this as an important step toward a full-field theory incorporating heat and mass transport and their cou-
pling with the stress response in hydrogels.

As in our previous work, the work reported here relies on a sharp-interface theory. In particular, we uti-
lize the theory developed by Gurtin and Struthers (1990) to describe coherent, diffusionless solid-solid phase
transitions. Within that theory, the bulk phases are treated as non-linearly thermoelastic and therefore—as
is essential for applications of the kind we consider—are capable of sustaining finite strains and rotations.
Adopting the approach of Gibbs (1878), Gurtin and Struthers (1990) account for localized interactions be-
tween phases by endowing the interface with thermomechanical structure in the form of excess fields. Of
essential importance in the theory of Gurtin and Struthers (1990) are the notions of configurational force
and configurational force balance.

Roughly speaking, configurational forces are related to the integrity of the body’s material structure and
expend power in the transfer of material and in the evolution of defects. In dynamical problems, defect
structures, such as phase interfaces and dislocation lines, may move relative to the material. In variational
treatments of related equilibrium problems, independent kinematical quantities may be independently var-
ied, and each such variation yields a corresponding Euler—Lagrange balance. In dynamics with general
forms of dissipation there is no encompassing variational principle, but experience demonstrates the need
for an additional balance associated with the kinematics of the defect. An additional balance of this sort is
the relation that ensues when one formally sets the variationally derived expression for the driving force on
a defect equal to a linear function of the velocity of that defect. Classical examples of driving forces are
those on: dislocations (Peach and Koehler, 1950); triple junctions (Herring, 1951); vacancies, interstitial
atoms, and inclusions (Eshelby, 1951); interfaces (Eshelby, 1956, 1970); crack tips (Eshelby, 1956; Atkinson
and Eshelby, 1968; Rice, 1968).
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Guided by variational treatments in which such a balance is a consequence of the assumption of equi-
librium, Gurtin and Struthers (1990) (see also, Gurtin, 1995 and Gurtin, 2000) introduce, as primitive ob-
jects, configurational forces together with an independent configurational force balance. In the bulk
phases, which are free of defects, the configurational force balance yields no information beyond that al-
ready contained in the standard Newtonian force balance and, therefore, is redundant. On the interface,
however the configurational force balance yields an evolution equation which generalizes the Gibbs—
Thomson relation arising in descriptions of alloy solidification (cf., e.g., Mullins and Sekerka, 1963)
and supplements the conventional equations expressing standard force balance and energy balance on
the interface.

In its general form, the theory of Gurtin and Struthers (1990) allows for material anisotropy of both the
bulk and interfacial constitutive response functions. We specialize the theory in accord with the observed
isotropy of gel-like substances. In particular, the swollen and collapsed phases of the material are each char-
acterized by properly invariant isotropic response functions determining the free-energy density and the
heat flux. For simplicity, we assume that the free-energy density of the interface is constant and, therefore,
coincident with the notion of surface tension. Further, while we account for dissipative transition Kinetics,
we neglect heat conduction on the interface. Our particular constitutive assumptions lead to final evolution
equations of the theory in which the coupling between the bulk motion and temperature fields is much more
complicated than it is in the evolution equations arising in our work on chemically induced transitions,
equations in which the sole coupling between the bulk fields is through the configurational force balance
on the interface.

As in our previous work, we develop equivalent variational forms of the evolution equations and bound-
ary/initial conditions. Enriched approximations to the temperature and deformation fields are developed in
the context of the eXtended Finite-Element Method (XFEM), and we employ a level-set representation of
the interface. The numerical strategy is similar to that described by Dolbow et al. (in press), with a few
notable exceptions. In particular, due to the stronger coupling between the bulk temperature and deforma-
tion fields, we develop a non-standard operator split to decouple the bulk equations for energy and force
balance. We also employ a greatly simplified version of the level-set update.

The X-FEM (Moés et al., 1999; Dolbow, 1999) is a variation on the partition-of-unity framework (Me-
lenk and Babuska, 1996) for building local, non-polynomial ansatz spaces into an approximation to a bulk
field. Building upon the early work of Belytschko and Black (1999) on linear elastic fracture mechanics, the
method has been advanced and applied toward the modeling of fracture in polycrystalline microstructures
(Sukumar et al., 2003), crack nucleation (Bellec and Dolbow, 2003), and incompresssible hyperelastic mate-
rials (Dolbow and Devan, 2004). With regard to the simulation of phase transitions, the “enriched” spaces
of the X-FEM allow for the representation of sharp interfaces over meshes that need not explicitly “fit” the
interface surface without artificially smearing the bulk field across the interface. A further variation on this
theme concerns the eXtended-Finite-Element/Level-Set Method (XFE/LSM) (Ji et al., 2002), wherein both
the local solution and geometry of arbitrarily evolving features are represented with evolving functions. The
coupling of the two methods was first conceived in Sukumar et al. (2001), and several recent advances have
improved the robustness of the XFE/LSM. These include new enrichment functions (Moés et al., 2003) for
interfaces and techniques to enforce and evaluate interfacial jump conditions (Ji and Dolbow, 2004; Dol-
bow et al., in press).

The paper is organized as follows. Section 2 provides an overview of our thermomechanical sharp-
interface model of SRH kinetics. Variational formulations of the evolution equations are provided in Sec-
tion 3 together with the numerical strategy of the eXtended Finite-Element/Level-Set Method (XFE/LSM).
We then begin our numerical investigations of the theory in Section 4 by considering the response of spher-
ical specimens to thermal actuation. The stability of the phase change is further studied by examining the
thermomechanical response of cylindrical specimens with perturbed phase interfaces. Finally, a summary
and concluding remarks are given in the last section.
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2. Formulation

To account for the roles of deformation and thermal transport in the swelling of hydrogels, we work with
the sharp-interface theory of Gurtin and Struthers (1990) specialized to account for the isotropy of gel-like
substances.

2.1. Kinematics

We label the swollen and collapsed phases by o and f§ and write S for the interface, which we take to
divide the region R occupied by the body into complementary subregions R,(¢) and R4(f). We use Grad
and Div to denote the gradient and allied divergence operators in the bulk phases, Divs to denote the diver-
gence operator on the interface, and a superposed dot to indicate partial differentiation with respect to time.

We confine our attention to circumstances under which S(¢) is, for each ¢, a smoothly orientable surface
that evolves smoothly in time. We write n for the unit normal on S, directed outward from R, as shown in
Fig. 1, v for the (scalar) normal velocity of S in the direction of n, and K = —Divgn is for the total (i.e.,
twice the mean) interfacial curvature.

Aside from the configuration of S, the primary unknowns of the theory are the deformation y of the
polymer network and the absolute temperature 0. Of basic importance are the assumptions of coherency

[y]=0 (2.1)
and local thermal equilibrium
[6] =0, (2.2)

where [g] = § — g, with Zé the interfacial limit of a bulk field g from within the collapsed phase and g the
corresponding limit from within the swollen phase.

2.2. Bulk and interfacial equations
With a view to focusing on the processes of interfacial motion and bulk diffusion, we neglect inertia.

Further, with the exception of a constant interfacial tension, we neglect the thermomechanical structure
of the phase interface. Further, we neglect all external supplies.

collapsed phase (R )

swelled phase (R,,)

Fig. 1. Schematic indicating: the regions occupied by the swollen and collapsed phases; the evolving interface S, with unit normal n
directed into the collapsed phase; a fixed control volume P divided by S into time-dependent regions P, and Py in the swollen and
collapsed phases.
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In each bulk phase, the basic equations of the theory express deformational force balance, moment bal-
ance, and energy balance. Writing S,, ¢,, and q, for the Piola stress, internal energy density, and heat flux in
phase 7, those equations read

DivS, = 0,
S,F' =FS/, (2.3)
&, =S, -F— Divq,,

where F = Grady denotes the deformation gradient.

On the interface, the basic equations of the theory express deformational force balance, energy balance,
and normal configurational force balance. Of these, the last is a generalization, appropriate to the present
context, of the Gibbs—Thomson relation utilized in theories of alloy solidification. Writing #, for the entro-
py density of phase 7, ¢ for the interfacial tension, and f for the normal component of the internal interfacial
configurational force density, these equations read

[S,Jn=0,
([e; = Syn-Fn] +oK)v=[q,] - n, (2.4)
e, = On, —S,n-Fn] + oK +f =0.

These interfacial equations are supplemented by the conditions (2.1) and (2.2) of coherency and local ther-
mal equilibrium. Since we neglect interfacial deformational stress, moment balance is satisfied trivially on
the interface.

2.3. Constitutive equations

To close the bulk and interfacial equations (2.3) and (2.4), we provide constitutive equations for the bulk
free-energy density y, and heat flux q, of each phase y and for the internal interfacial configurational force
f. Consistent with the isotropy of gel-like substances, we take these equations to be isotropic.

Motivated by the works of Chadwick (1974) and Chadwick and Creasy (1984), we assume that the free-
energy density of phase y is given by

W, =y, (F,0) = g W,(1(B)) + Jow, + c0 (1 - 10g£> (2.5)

1 /

with B=FF ' the right Cauchy-Green tensor, 0, a reference temperature for phase y, and c the constant
specific heat (assumed identical for both phases). Bearing in mind the thermodynamic relations
& =, + On, and n, = -0y (F, 0)/00, the difference

£=[e] = hw], (2.6)
represents the latent heat of swelling. Without loss of generality, we take

Jﬁ =1 and W = 0. (27)
Since « is the swollen phase, we must necessarily have

Jy > 1 (2.8)
further, it follows from (2.6)—(2.8) that

0= —Jiw,. (2.9)

To embody experimental observations showing that most gel specimens swell and collapse at sufficiently
low and high temperatures, respectively, we assume that

0 <0, and w, <O. (2.10)
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These choices lead to the swollen and collapsed phases being energetically preferable (upon neglecting
mechanical contributions to i) at sufficiently low and high temperatures, respectively. We remark that they
also give rise to a positive latent heat of swelling.

For specificity, we assume that W, has the form

W, (i(B)) :% (11(13) ~ 2/ 1og ( Ij@) - 3J?,> +)“';]§ (( {;(B)> +log (@)) @2.11)

with p, > 0 and 4, > 0 mechanical moduli for phase y. It can be shown that phase 7 is stress-free at the ener-
getically preferred dilatation F = J,I, and that u, and A, correspond to conventional shear and Lamé mod-
uli for infinitesimal deviations about this stress-free state (Dolbow et al., 2004).

For the heat flux of phase y, we assume simply that

q, = —k,Grad 6 (2.12)

with k, > 0 the constant (scalar) thermal conductivity of phase }.
In general, the internal configurational force is a drag force that describes the kinetics of the phase tran-
sition. For simplicity, we restrict attention to linear transition kinetics, in which case
\

fe o (2.13)

with M > 0 the interfacial mobility.
2.4. Evolution equations

On combining the bulk field equations (2.3); and (2.3); expressing deformational force balance and en-
ergy balance, the constitutive equations (2.5) and (2.12) for the free-energy density and heat flux, and the
thermodynamic relations S, = 0y, (F, 0) /0F and n, = -0y (F, 0) /00, we arrive at bulk evolution equations

Div (ﬂ 76W’(’(B))> -0,

0, oF
} 0 oW,(1(B)) (2.14)
0 = k,Div(Grad 0) + o # -F,

i

valid for each phase y. A direct calculation shows that, together, the constitutive equation (2.5) and the
thermodynamic relation S, = 0y (F, 0) /OF guarantee satisfaction of the moment balance (2.3),.

Further, on combining the interfacial field equation (2.4); , ; expressing deformational force balance, en-
ergy balance, and normal configurational force balance, the constitutive equations (2.5), (2.12), and (2.13)
for the free-energy density, heat flux, and interfacial internal configurational force, we arrive at the inter-
facial evolution equations

[RETL) P

0, oF
<e - ng"’a(;(m)n - Fnﬂ + aK>v + [k,Grad 6] -n =0, (2.15)
Y

\
{+e+c[logh,]0+ oK =7

where we have introduced the mechanical driving traction
e=n-[E]n (2.16)
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with
0 - W, (1(B))
E, = 9_» (Wy.(z(B))I —F —aF (2.17)
representing the essentially mechanical contribution to the Eshelby (or configurational stress) tensor for
phase 7.

In contrast to the evolution equations studied by Dolbow et al. (2004), where coupling between the bulk
fields is only through the normal configurational force balance, the final governing equations (2.14) and
(2.15) of the theory presented here involve a non-trivial coupling between the deformation and the
temperature.

2.5. Boundary conditions

Writing v for the unit orientation of OR, directed outward from R, we assume that

Y|(a7z)m =y and (S")|(a7z), =S (2.18)
with (0R),, and (OR), complementary subsets of 0R, and that
9|(a7z)p =0 and (q- V)|(a7z>f =9 (2.19)

with (0R), and (0R), complementary subsets of OR.
2.6. Normalized evolution equations

To simplify our analysis, we suppose that L and 7 denote a characteristic length and time and introduce
the dimensionless independent variables
X t
=, == 2.20
T T’ (2.20)
dependent variables'

YO0 gy 000

y*(X*at*): 3 X 7t )
Tv%x 1) O (2.21)
VX)) =——, KX 1) = LK(x.0),
and material parameters
«_ M v _ £ _ * . kT
by = (éea’ =@, T hi=h k=g
0; = Ql 0 =1, (2.22)
ra 14 . O . McO,T
T, ? T el,L’ L
The normalized evolution equations are then
o oW’ (1(B
piv (LS 0B
0, OF . (2.23)
0’ — k' Div(Grado') + & i UB) &
—HEY 0. OF

"'In (2.21)5 and (2.21),, it is assumed that x lies on S(¢).
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in each bulk phase y and

comam) T
0 OF -

V

oW (i(B
(é* - Hz* #n . Fnﬂ + o*K*)v* + [k,Grad0"] -n =0, (224)

Y

*

\
M*

¢ +e +[log0]0" +o*K" =
on the interface. For convenience, we hereafter omit the superscript asterisks and the explicit mention of

both collapsed () and swollen (f) phases. Unless otherwise specified, all reported quantities are
normalized.

3. Numerical strategy
3.1. Operator split

For the purpose of efficiency, we employ an operator split to solve the coupled system (2.23) and (2.24)
of bulk and interfacial evolution equations. In our operator split, the mechanical problem is solved in the
first stage with the temperature field held fixed, and then a thermal problem is solved in the second stage.

The governing equations at each stage are

Stage I ( Mechanical)
Div (9 aW(’(B))> —0,

0, OF (3.1)
0=0.
Stage Il (Thermal)
y=0,
0 = k,Div(Grad ) + 0 oW, ((B)) (3-2)

0, OF

Although the above strategy does share some common features with so-called “isothermal” splits, there are
several important differences that we discuss in the following sections.

3.2. Variational formulation

3.2.1. Weak statement of the deformational force balance and normal interfacial force balance

We let A,, denote the space of kinematically admissible motions that are sufficiently regular and comply
with the Dirichlet boundary condition (2.18);. Motions in .4,, automatically satisfy the coherency condition
(2.1). We let V,, denote the corresponding space of suitable variations with vanishing values on the essential
boundary. Upon multiplying each term of the bulk force balance (3.1); by an arbitrary weight function w in
V., integrating the resulting equation over R\ S, and integrating by parts, we obtain the variational
boundary-value-problem: find y in A, such that
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0 ow,(F) B
Z/RH_ F -Gradwdv—/ s-wda (3.3)

y=o,f8 (0R),

for all variations w in V,,. In the derivation of the above, we have used the interfacial force balance (2.24);.

3.2.2. Weak statement of heat conduction, interfacial energy balance, and interfacial configurational force
balance

In the thermal stage, we consider the space .4, of sufficiently regular temperature fields satisfying the
Dirichlet boundary condition (2.19);. We use V), to denote the space of variations in the temperature. Upon
multiplying each term of the bulk heat conduction equation (3.2), by an arbitrary variation w in V,, inte-
grating the resulting equation over R \ S, and integrating by parts, we obtain

> / (0w + k,Grad 0 - Gradw) dv + / [k,Grad 0] - nwda
R, S

y=op
L(1(B .
= Z (EM~F>wdv+/ gwda. (3.4)
5 =, 0, oF (@R),

Next, we eliminate the velocity v between the interfacial energy balance (2.24), and the interfacial config-
urational balance (2.24); to yield

{+e+ oK
[[kyGrad Hﬂ n = 05(0 =+ W), (35)
where we have introduced
L(1(B
o=—-M{—p+oK)[logh,] with pz[?%n-Fn]}. (3.6)

i

Finally, substituting (3.5) into (3.4) and rearranging terms, we obtain the variational boundary-value prob-
lem: find 0 in A, such that

> / ((9w+kyGrad9-Gradw)dv+/chwda: Z/ swdv+/ qwda+/a9gwda (37)
y=o,f Ry S y=a,p Ry (672)/ s

for all variations w in Vy, where

g, — — LTt nd SZHE

) o, (1(B))
[log6,]

5 -F. (3.8)

Eq. (3.7) is equivalent to imposing the bulk energy balance (2.23),, the boundary conditions (2.19) and
(3.5).

3.3. Representation of the interface

We represent the interface as the zero-level set

S@t) = {x:{(x,t) =0} (3.9)
of a function { and, following Osher and Sethian (1988), insist that { satisfy
{ +1°|Grad(| =0 (3.10)
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with the extension velocity v° constructed to obey

_ [k,Gradd] - n
—p+oaoK ’

g =v = (3.11)
where we have used (2.24),. We take { > 0 in the collapsed phase and { < 0 in the swollen phase. The normal
n and total curvature K of the interface can be expressed in terms of the function { via

Grad( . ( Grad(
= > K=_-Div| ——= ). 12
n |Grad (| and 1V<|GradC|> (3.12)

Our variational form for the level-set equation (3.10) is based on the assumption that the field { is approx-
imately a signed-distance function to the interface, and thus satisfies |Grad {| = 1. Accordingly, we follow
Mourad and Garikipati (in press) and first replace (3.10) by

{+v°=0. (3.13)

Writing A, for the space of admissible level-set fields, the variational equivalent to (3.13) is given by: find
{ € A; such that

AMM:—Ammv (3.14)

for all w € A;. Eq. (3.14) is equivalent to enforcing the interfacial energy balance (2.24),. Together with
(3.7), the normal configurational force balance (2.24); is also imposed.

3.3.1. Domain integral approximations to interfacial quantities

In Dolbow et al. (in press), we demonstrated the advantage of approximating interfacial quantities such
as the mechanical driving traction e, the curvature K, and normal n with integral-based expressions that are
more amenable for evaluation with weighted-residual methods. Here, we provide only the main results.

Consider an arbitrary point x; on the interface where some interfacial quantity is desired. Let w,; denote
a sufficiently smooth scalar-valued weight function with compact support B = supp(w,) disjoint from
(0R),, so that BN (0R), = 0, and containing x,. We use B, and By to denote the bulk domains formed
by intersections of B with R,, respectively, and Ry and £ = BN S to denote the portion of the interface
that lies within B (Fig. 2).

collapsed phase (Rgp)

swollen phase (Rg)

Fig. 2. Local domain B corresponding to the support of a weight function w, partitioned into complementary subsets B, and By in the
vicinity of point x, on the interface S.
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Assuming that e is constant over £, it can be shown that
> mup J5 0 Ey (0, F)Grad w, dv
f£ Wy da ’

where n® denotes the extension of the interface normal to points not on the interface, obtained via the func-
tion { through (3.12);.
Next, we consider the jump

j =[k,Grad 0] - n, (3.16)

e(xy) ~ —

(3.15)

of the normal component of heat flux across the interface. Again, assuming that j is constant over £, it can
be shown that

> s Ji, (Owa = swy + k,Grad 0 - Gradw,) dv
[, wada '

We remark that (3.17) may be viewed as a generalization of the superconvergent boundary-flux calculation
proposed by Carey et al. (1985).

The same technique can also be used to obtain approximate expressions for the interfacial normal n and
total curvature K by postprocessing the approximate level set functions. Specifically, multiplying both sides
of (3.12); and (3.12), by w, and lumping quantities at the point x; we obtain

s \g:ﬂjé\ wqdv
€ A2 PO 3.18
) (3.18)

i(xq) = — (3.17)

and

Ke Ji 1argsy - Gradwy dv
(Xd) ~ fB o do

(3.19)

3.4. Discretization with the XFEILSM

3.4.1. Approximation for the motion y

Finite-element computations entail the projection of the solution space A,, and the associated space V,,
of variations onto finite-dimensional subspaces A" and V" . The Galerkin approximation of the variational
boundary-value problem stated in Section 3.2.1 reads: find y” in AZ such that

0 oW, (1(B"))

-Gdhd:/ -w'da, 3.20
N ] 0, oF" e v ( )

(@R),

for all variations w" of y”" belonging to V".

We consider the set of overlapping subdomains {Q,} defining the support of each nodal shape function
and an enrichment function r that possesses desirable approximation properties in a vicinity of the inter-
face. The approximation for the deformation is given by

Y (%0 = 3 606,(E00) + D €0, (EX)r(x. 1), (321)
classical approximation enrichment

where ¢,, i =1,2,... are the nodal shape functions and & the local element coordinates. In the above, I de-
notes the set of all nodes in the mesh and J = {j € I : Q; NS # ()} the set of nodes that form a partition of



H. Ji et al. | International Journal of Solids and Structures 43 (2006) 1878-1907 1889

unity for r (Melenk and Babuska, 1996). An example of a two-dimensional mesh with superimposed inter-
face and the subset J C [ identified is shown in Fig. 3.

To capture the discontinuity in the gradient of the motion normal to the interface, we enrich with the
“ridge” function (Moés et al., 2003)

: (3.22)

i

r(x) = > [Glei(E(x)) — 'Z Libi(8(x))

where (; is the signed-distance function to the interface evaluated at the vertex of node i. As the disconti-
nuity coincides with the phase interface, the above choice provides a mechanism for the approximation
(3.21) to represent the geometry of the interface independent of the element boundaries. Furthermore, as
the interface evolves, we update the enrichment function and the set J; no remeshing is performed.

Substitution of (3.21) into (3.20) results in a non-linear system of equations in {c;e;}. We employ the
standard Newton-Raphson procedure and solve the above with a sequence of linearized problems. These
take the form

K" Ad, = (3.23)

with K’ the tangent stiffness matrix at iteration #, #"" the residual vector, and Ad, the vector gathering the
incremental degrees of freedom Ac; and Ae;. After solving the above, the solution is updated in accord with
¢l =¢" + Ac; and e;?“ = e} + Ae;.

The construction of the tangent stiffness matrix and residual vector requires the accurate integration of
terms containing the classical and enriched basis functions over the element subdomains. The standard ele-
ment-based quadrature routines are modified for those elements wherein the functions are discontinuous.
Details can be found in Moés et al. (1999) and Dolbow et al. (in press).

Fig. 3. Two-dimensional mesh of four-node quadrilateral elements with an interface S superimposed. The circled nodes correspond to
the subset J that are enriched with the ridge function r to capture gradient discontinuities across the interface.



1890 H. Ji et al. | International Journal of Solids and Structures 43 (2006) 1878—1907

3.4.2. Approximation for the temperature 0
The Galerkin approximation to the variational boundary-value problem stated in Section 2 reads: find 6"
in Aj such that

/ "W + k,Grad ¢ - Gradw)dv+/ o 0"w" da

y=o,f S

=Y [ owans |
y=o,f} v (OR)

for all variations w” of 0" belonging to V4.
The approximation to the temperature field takes the form

= S a0 (E0) + 3 b0, (EX))r(x, 1), (3.25)

il =

gw"da + /s ahﬁzwh da (3.24)

!

in which {¢;} is the set of nodal shape functions used in the approximation for the motion. Here, enrich-
ment with the ridge function allows the approximation 0" to represent arbitrary gradient discontinuities in
the temperature field across the interface.

We consider the solution on the time interval [0, ], partitioned into time steps as [¢", ¢ "*11. We employ the
backward Euler time-stepping algorithm to approximate 6:
R 671+1 o Gn
0 =—" 3.26
A (3.26)

with Az = "' — ¢". This scheme is well-known to be first-order accurate and unconditionally stable. Substi-
tuting the above into (3.24) yields the semi-discrete Galerkin formulation at time "

n+1\1
Z / ) w' + k,Grad (0""")" - Grad w" dv—f—/och(ﬁ"“)hwhda
y=o,f} Ry At S

7\ 7 g
=) OF o) wdot [ gurdat [ (@Y da, (3.27)
= IR, At (0R), S ¢

We again adopt a Bubnov—Galerkin approximation and write approximations for the variations w" in
forms similar to (3.25). Upon substituting the approximations into the discrete weak form (3.27) and invok-
ing the arbitrariness of the variations, we obtain a linear system of equations

Kody = f, (3.28)

where dy gathers the degrees of freedom «; and b;.

We remark that o, 6” and " in (3.27) are obtamed upon substitution of y" and 6" into (3.6) and (3.8). A
backward Euler algorlthm is employed to calculate F from y(#""') and y(¢"). In the present operator split,
we use the approximate temperature field 6 employed in the previous thermal step to calculate these quan-
tities. Otherwise, (3.27) would represent a non-linear system of equations for the degrees of freedom dj.
Through iteration between Stage I and Stage II, convergence in both the approximate motion and temper-
ature fields is obtained.

3.5. Discrete versions of domain integrals

We use discrete forms of the domain integrals discussed in Section 3.3.1 that do not employ an ambig-
uous “‘domain size multiplier”’. This is to be contrasted with well-known domain integral techniques for
fracture mechanics (Moran and Shih, 1987).
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Consider the set of nodes D= {i € I:Q; N x,; # ()} whose support contains the point x; The contribu-
tion e, of node k € D to the mechanical driving traction at a point x, on the interface is given by

PR fQﬁer n" . E, (0", Grady")Grad ¢, dv

e(xy) = — 3.29

k( d) fﬁh (,bk da ( )
Repeating the above calculation for each node in the set D allows us to construct the approximation

e (xa) = > ei(Xa)pi(E(xa))- (3.30)

i€eD
In effect, only those nodes with support containing the point x, contribute to the domain integral approx-
imation to e.

The above expression involves an approximation n” to the extended normal n¢ obtained from the level-
set function {. Consistent with the above, we use

" (xa) = Y 0 (x) i (E(xa)), (3.31)

ieD
where the coefficients n¢(x,) denote lumped approximations to the extended normal. For the approxima-
tion K" to the curvature appearing in the Galerkin approximation (3.24) to u, we likewise take

Ki(xa) = > KiXah,(£(xa)) (3.32)
ieD
with the constants K (x,) denoting lumped approximations to the extended curvatures at the nodes. The
coefficients n¢(x,) and K¢(x,) are both determined using the approximation {” to the level-set function ¢,
as described in the next section.
The discrete domain integral approximation to the jump in normal component of the heat flux is given
similarly by
- _ .
Pxa) = 5i(xa)hi(E(xa)) (3.33)
i€eD
with
h
. Zy:a,[ize fQﬁer (0 ¢k - Shd’k + k,},Grad 0" - Grad d)k) dv
X;) = — d )
Jk( d) fﬁh ¢k da

The expression (3.6), for p does not lend itself to evaluation with domain integrals because it is difficult to
identify a corresponding bulk equation. Therefore, we employ the direct evaluation

0 ow,(i(B")) .
p = He— %Tnh “F'n || (3.35)

(3.34)

3.6. Level-set algorithm and coupling with bulk fields

We write A’g for the finite-dimensional subspace of A;, and approximate ¢ using the forward Euler
algorithm

n gnJrl _ Cn

= A (3.36)
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substituting into (3.14), this yields: find ({"')" € Aif such that
/ (' whdo = / (&Y' dv — At / (v°)"w" dv (3.37)
R R R

for all W € Af’
We approximate { using the same nodal shape functions that were employed for the motion and temper-
ature fields:

= ZCI(I)Q(&(X)) (3.38)
i€l
Enrichment is not used since we anticipate { to be smooth in the vicinity of the interface.
Substituting (3.38) (and an analogous expansion for w") into (3.37), and lumping quantities at the nodes
yields the simple update formula

o= — Anf(x,). (3.39)

1

The key to the algorithm concerns the construction of the extension velocity v°. In particular, we seek to
construct the extension velocity such that the solution to (3.13) is the signed distance function to the inter-
face. A standard approach (Sethian, 1999) is to construct v such that

’|..p=v, and Gradv’-Grad{=0. (3.40)

Fast marching methods have been developed to effect this, but a simpler approach suggested in Garikipati
and Rao (2001) is followed here.
The normal velocity v is first determined on each subsurface S° through a discrete form of (2.24),:
h
V= —]—h (3.41)
L —ph+ oK

incorporating the aforementioned domain-integral approximation (3.33) to the jump in heat flux. We then
loop over the nodes in the mesh and determine the closest point projection x, of each vertex x; onto the
interface as represented by the set of subsurfaces {S°}. The extension velocity at the node is then assigned
via

v (x;) = V! (%,(x0)).- (3.42)

We use bilinear shape functions based upon standard four-node quadrilateral elements. Substitution of
(3.38) directly into (3.12) leads to expressions for n° and K¢ that are nearly constant or vanish over each
element Q,. The extended normal and total curvature are much more accurately approximated using dis-
crete versions of (3.18) and (3.19), respectively. Thus, about each vertex in the vicinity of the interface we
calculate

Grad "
e ngeQ, |Grad {"| ¢;dv

¢ — 3.43
K Ja.eo, ®idv (343)
and
Grad . Grad ¢, dv
K¢ — erEQi |Grad ¢*| ! (344)

l erEQi d)i dv

for use in the expansions (3.31) and (3.32). In Dolbow et al. (in press), we demonstrated that the foregoing
approximations are second-order accurate.
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3.7. Staggered solution strategy

To find an accurate solution to the transient problem, it is necessary to perform an iterative strategy at

each time-step. We use (~)”’k to denote values at iteration k& within time step n, and (-)" for the converged
solution of time-step n.

The following strategy assumes that all fields are known at time-step 7, and the objective is to obtain the

converged fields at time-step n + 1.

1.

2.

Set 7"t =¢"+ Ar. At time-step n + 1, evolve the interface geometry by updating the coefficients {;

through (3.39).

Start iterations in time-step n + 1 with k = 0.

(a) If k=0, set 0710 =¢" and v"*'° = V". Solve the force balance equations (3.23) with 0 = 0",
Postprocess the mechanical fields to obtain €” and p” given by (3.30) and (3.35) and then determine
o and 0, s through (3.6) and (3.8), respectively.

(b) With o, 0., and s known, solve (3.27) to obtain QAL

(c) Determine the approximate velocity v' 711 using (3.41) and then evaluate the error norm

fs(vnﬂ,kﬂ _ Vn+1,k)2 da

fs(vn+1,k+1)2 da

(d) Compare the error norm to a tolerance ¢,. If the error norm is larger than ¢, set k =k + 1, go back
to step (a) and repeat steps (a)—(d). Otherwise, set "1 = 0" T1A+1 apd 1 = 1 H1AFL

. Return to step 1.

. Application: swelling of a spherical specimen

We first consider a spherical gel specimen with a traction-free boundary occupying the region

R={x:|x| <R} (4.1)

with the temperature held spatially constant on its surface.

4.1. Kinematical specialization

We write
X
e — (4.2)
x|
for the base vector. The requirement that the specimen be traction-free yields
Se|, = 0. (4.3)
Writing © for the time-dependent temperature at the boundary of the specimen, we have
Olsr = ©. (4.4)

We restrict attention to circumstances in which the deformation and the temperature depend at most on
radial position r = |x| and time ¢, viz.,
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y(x,t) = y(r,t)e and 6O(x,t) =0(r,1). (4.5)
Consistent with these assumptions, we suppose that the interface is spherical, and write
St ={x:|x| =s(t} (4.6)

for its position at time . Anticipating that swelling should proceed from the boundary inward toward the
center of the specimen,

n=—e, K = —Gradgn :g, and v= -s. 4.7

We use g’ to denote the partial derivative of a field g with respect to r. Thus, by (4.5);, the deformation
gradient has the particular form

F(r,t) = y/(r, t)e®e+@(l—e®e) (4.8)
and the Jacobian is given by
2 /
J(r, 1) = detB(r, 1) = 200 (4.9)

2
4.2. Reduced evolution equations

4.2.1. Bulk equations
In view of (2.5) and (4.8), and (4.9), the stress field is given by

oY, (F,0
S(F,0) = %:Sueébe—&—&(l—e@e) (4.10)
with
Ji LD 1) 0
] J3D(r t
Syrt)y = |V (re) —— ] — 4.11
1720 (H" (y (0 ¥(r, t)) M) )w o
and
y(r, 1) J%r i.‘,J%rD(r, AR
- _ ) =z 4.12
S0 (“( T r)) e )0, @12
the components of radial and hoop stress, with
S(r,0) (J(r,0) J(r,2)
D(r,t) =22 (20 ) fog (222, 4.1
) =200 (T50 1) g (7 (4.13)

The deformational force balance (3.1); reduces to the scalar equation (rzS”(r, 1)) =2rS,(r,t), which, by
(4.11) and (4.12), can be written as

0 , g L JD(r, 1)
(£ (e -sa) +5257))

B 7P\ 2P0\ 0
= 2<,u.,, (y(r, t) ~0 t)) + V) > o (4.14)
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Similarly, by (4.5),, the heat conduction equation (3.2), simplifies to
. Y t
R0(r.1) = k(120 (r,8)) + S, (r,0)§/ (1) + 28, (r,1) 2 (r,1)

(4.15)
4.2.2. Interfacial equations
On appealing to (4.7); and (4.10), the deformational force balance (2.24), at the interface reduces to the
scalar equation [S)] = 0, which, by (4.11), can be written as

0 / Ji 2060,0\
|:|:9_’ (:uy (y (S(l), t) _y,(S(t), l)) + >ﬂ =0.

4.16
2000 (416
Similarly, by (4.5) and (4.7), 3, the expression for the interfacial velocity (2.24), simplifies to
: [£,0'(s(1),1)]
= ’ ) 4.17
=S G000+ 5 @
Finally, by (2.11), (4.8), (4.10), (4.11), (4.12), and (4.7), the normal configurational force balance (2.24);
becomes
20 1 50 4 gy e(s(1), 1)
i s(1) M ’
0,(¢) [log0.] , (4.18)
where 0,(1) = 0(s(t),t), and where e(s(t),?) = 0(s(t), 1) [ E|(s(?), )], with
_ Ui G CON RN ACON) :
H:EH (S(t)? t):” - 2 |:|:0} ((y (S(t), t)) + SZ([) + 2‘]“/ lOg Jy 3']“/
1|2 2( (J(s(2),2) : > (J(s(0), 1)
+ Z |:|:6—ny << J}, -1 + 10g J}, — 6D<S(t), t) . (419)
4.2.3. Boundary conditions

Consistent with the assumed symmetry of the deformation, we have the condition
»(0,7) =0

(4.20)
at the center of the specimen. By (4.10), considering 6 > 0, the traction-free condition (4.3) reduces to
m@@ﬁ—,

2 2
H) I3 (R, 1)
+ =

y&D) @Y (420
The requirement that 6 be radially symmetric implies

6'(0,¢) = 0. (4.22)
By (4.5),, (4.4) becomes

O(R,t) = O(1).

(4.23)
4.2.4. Initial condition

We suppose that the position of the interface is given initially, so that
s(0) =sp, with 0 <sp <R.

(4.24)
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4.3. Numerical investigation

The thermomechanical model is similar to the chemo-mechanical problem presented in Dolbow et al.
(2004) in many ways, albeit with stronger coupling between the bulk fields. In the following numerical stud-
ies, we focus on some of the more unique predictions provided by the thermomechanical model. We per-
form all studies using a mesh with uniform nodal spacing # = R/100, which was found to yield converged
results.

4.3.1. Steady-state solution )

Under steady-state conditions, # = 0, y = 0, s = 0, and the governing equations simplify considerably.
Further, a spatially constant temperature field O satisfies the bulk equation (4.15). For such a constant-
temperature state to exist with the position s of the interface located in the open interval between r = 0 and
r = R and satisfy both the interface condition (4.18) and the boundary condition (4.23), we must have

0(r) = 0(s) = O (4.25)
for all r in (0, R), with
oy
O = : (4.26)

-~ [log6, ]+ [E]’

where the mechanical contribution E| is given in terms of the motion y by (4.19). We note that when the
temperature is spatially uniform, the solution y to the bulk force balance (4.14) is independent of 0. For a
given position of the interface, the force balance equations can be solved, yielding £ and a steady-state
temperature @ through (4.26).

We next examine the variation in this steady-state temperature for a sequence of interface positions. The
material properties used in these tests are given in Table 1. The normalized steady-state temperature is
shown in Fig. 4 as a function of normalized interface position. As the interface position is increased, the
collapsed phase occupies an increasingly greater portion of the domain and the steady-state temperature
is found to decrease.

Table 1
Baseline material properties and parameters used in the parametric studies
Property Normalization Collapsed phase (f) Swollen phase (o)
c c 1.0 1.0
T
k, kT 0.01 0.02
0,7
0,
0, = 0.5 1.0
v 0%
I
g 0.002 0.002
c0,Z
Mcb, T
M R 500 500
V4
“, Ll 0.005 0.0025
cl,
Ay )— 0.025 0.005
CcUy
J, J, 1.0 10.0
/ ! 1.0 1.0

cl,
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Fig. 4. Normalized steady-state temperature as a function of normalized interface position.

In light of (4.26) and examining the contribution from the latent heat with the material properties given
in Table 1, we obtain —¢/[ log6,] = —1/log(0.5) = 1.443. This level is close to the mean of the steady-state
temperature profile shown in Fig. 4, and we find that it is the dominant factor in (4.26).

Since ¢ and [ log 6, ] are constants, the variation in @ with interface position is only determined by the
interfacial tension ¢ and the quantity [£)]. To quantify these influences, we examine the steady-state tem-
perature by alternately setting ¢ = 0 or [E)] = 0. The comparisons of these results to those obtained with
non-zero ¢ and [E}] are shown in Fig. 5. We observe that [ E|] dominates the variation in @ with s until
the interface approaches the center of the specimen. Near the center of the specimen, the term 2¢/s dom-
inates due to the increased curvature of the interface.

We remark that, contrary to experimental observations, the steady-state temperature profiles indicate
that the collapsed phase is preferred at lower temperatures than the swollen phase. This trend depends
on the particular chosen values of material parameters. Alternative choices from those provided in Table
1 yield the reverse, i.e. steady-state temperature profiles that increase monotonically with s. However, we
find that the material properties and parameters in Table 1 do yield transient solutions in accord with exper-
imental observations, as discussed subsequently. We have not identified a set of material properties and
parameters that yield the “correct” trend for both steady-state and transient solutions. These results suggest
that the two-phase steady-state results are unstable.

I
[ [ [
1.7 —&— E #0,0#0—
—e— E,=0
. 1.65 A o’LO I
S
N 16
G} A
1.55 \\ﬂ\
15}
[ e — T8
145} \j

02 04 06 08
s/R

Fig. 5. Normalized steady-state temperature as a function of normalized interface position, with and without the interfacial free-
energy density ¢ or the term [£].
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4.3.2. Transient solution
Next, we apply the iterative strategy described in Section 3.7 to obtain transient solutions to the coupled
problem. We examine the swelling kinetics of a specimen with the following initial and boundary conditions

s(0) =sp, 0(r,0) = Og(s0) O(t) = Ox(so) + H (¢) (4.27)

with H the Heaviside function, s, the initial position of the interface, and @y(sy) the steady-state temper-
ature obtained from (4.26) at s = sy. These conditions correspond to an initially equilibrated specimen that
is subjected to a sudden change in boundary temperature. All numerical studies are performed on a mesh
with mesh size &4 = R/100 and variable time steps Az = h/v.

We first examine the case in which the initial position of the interface (s = 0.99R) is close to the bound-
ary and the specimen is nearly fully collapsed. To ensure full swelling, we also fix the boundary temperature
to be ® = 1.0. Fig. 6 shows the normalized temperature at various time steps corresponding to incremental
interface positions s/R = 0.8, 0.6, 0.4, 0.2. Next, to examine the response of a gel specimen that is nearly
fully swollen, we perform another set of tests with s, = 0.01 R. To ensure full collapse, we set the boundary
temperature to & = 2.5.

In Fig. 7, we superimpose the plots of the interfacial temperature from the two transient studies and the
steady-state profile. We observe that the transition from a collapsed to a swollen state results in interfacial

 a—

148 k/&

YRR

3 [ —8— s/R=08 \
1.2 o —A— 5/R=0.6

—— s/H=0.4\ \
—— s/R=0.2
N

0 0.2 0.4 0.6 0.8 1
r/R

11F

Fig. 6. Normalized temperature at various time steps corresponding to incremental interfacial positions as a gel specimen transitions
from a swollen to a collapsed state.

2 N

—+H—— collapsed (transient
1.7 —~A—— steady-state ]

——6—— swelled (transient)

15}

™

02 04 06 038
s/R

Fig. 7. Normalized interfacial temperature with interface position. Transient results for initially collapsed and swollen gel specimen are
shown along with the steady-state profile.
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temperatures that are greater than the steady-state levels. By contrast, the transition from a swollen to a
collapsed state results in interfacial temperatures lower than the steady-state levels.

The evolution of the interfacial position and velocity with time for the swollen-to-collapsed transition are
shown in Figs. 8§ and 9. We note that in contrast to the collapsed-to-swollen transition (where the interface
position is initially near the specimen boundary), there exists a slight temporal delay in the phase transition
in response to the step change in boundary temperature. During this period the velocity of the interface is
negligible and the thermal response is dominated by diffusion with very little deviation from the initial state.

We use the above process to identify transition temperatures 0™ and 0™, If the boundary temperature
is below 67", an initially collapsed specimen will become fully swollen. On the other hand, if the boundary
temperature is above 67, an initially swollen specimen will become fully collapsed. In Fig. 10 we show the
variation of the steady-state swelling ratio
Qiﬁ@)
=
with the boundary temperature. The transition temperatures are different, which qualitatively agrees with
the experimentally observed hysteresis for the volume transition (Hirokawa and Tanaka, 1984; Matsuo and
Tanaka, 1988).

(4.28)

/

0““1“‘2 3“”4””5”“6““7””8””9
t/T

02 /]

Fig. 8. Evolution of the interface position with time for an initially swollen gel specimen.

Fig. 9. Normalized interfacial velocity as a function of time for an initially swollen gel specimen.
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Fig. 10. Volume transition curves for the thermomechanical problem. The normalized transition temperature for the col-
lapsed — swollen phase transition is identified as 0" and that for the swollen — collapsed phase transition is 0.

4.3.3. Comparison with experimental observations

Experiments by Matsuo and Tanaka (1988) showed a hysteresis in the volume-phase transition in PNI-
PA hydrogels. The upper transition temperature, above which a swollen gel collapses with increasing tem-
perature was found to be greater than the transition temperature for the reverse transition. Both
temperatures were found to be between 33 °C and 38 °C for NIPA gels, with an average hysteresis gap
around 3 °C. Shibayama et al. (1996) also reported a transition temperature of 32 °C for a NIPA hydrogel.

If we assume that the gel specimens are initially at room temperature, the results shown in Fig. 10 predict
a hysteresis gap around 30 °C. Therefore, some adjustment to the material properties seems to be necessary
to correlate our model with experimental observations. From our initial studies into the transient response,
we observed only small deviations in the interfacial temperature from steady-state levels. Further, we find
that the transition temperatures 67" and 6" correspond quite well to the minimum and maximum tem-
peratures obtained from the steady-state profile.

Fig. 11 shows the steady-state interfacial temperature obtained after scaling the mechanical properties by
1/50 and o by 1/2 from those given in Table 1. This gives rise to a hysteresis gap on the order of a few de-
grees as well as transition temperatures that compare quite well with the aforementioned experimental

38
37

36 \
35
BEAN

33}

T T

T T T

9, (°C)

T T

S~

02 04 06 08
s/R

T T

Fig. 11. Steady-state interfacial temperature with adjusted material properties.
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observations. With the adjusted material properties, we note that the mechanical driving traction is rela-
tively small and that the surface tension dominates the variation in @ with s.

5. Swelling of a cylindrical specimen

In this section, we examine the kinetic response of a cylindrical gel specimen with circular cross-section
of radius R. Specifically, we choose a fixed orthonormal basis {e|,e,,e;}, write x; =X e,

r=4/x1+x3, ¢ = arctan (%) (5.1)
and consider a reference state in which the medium occupies the cylindrical region

R={x:r<R, —00<x;3<00}. (5.2)
We assume that the deformation is a plane strain, so that

V(X, 1) = y,(x1, %2, )€1 + y,(x1, X2, 1)€s + x3€3, (5.3)
that the temperature field is independent of the axial coordinate, so that

0(x,1) = 0(x1,x2,1) (54)
and that the lateral surface of the specimen is traction-free. Thus, introducing e = cos ¢e; + sin ¢e,, we have

Se =0. (5.5)

The material properties are taken as given in Table 1. Annular meshes of four-node quadrilateral elements,
such as the one shown in Fig. 3, are used throughout.

5.1. Self-similar interface evolution

First, we examine the case of a circular interface centered about the axis of the specimen, i.e.
S={x:|x|=r} (5.6)

with r, < R.

In the first set of studies, we fix the interface geometry as cylindrical at equally spaced radii and compute
the steady-state solution at these locations. Fig. 12 shows the steady-state temperature obtained on a series
of meshes with various levels of resolution. A 10 x 40 mesh, for example, uses 10 elements in the radial
direction and 40 in the circumferential direction. The results indicate that converged results are obtained
even on a relatively coarse mesh.

Next, we neglect the mechanical contributions to the interfacial conditions and seek the transient solu-
tion of the decoupled thermal problem. In this case, the interfacial temperature and velocity are given by

v/M — ¢ — oK
= Tlogal G7)
and
k,Grad0] - n
V= ‘%~ (58)

The initial conditions and are taken as
r(0) =0.975R, 0(0) = O(r,(0)) (5.9)
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Fig. 12. Normalized steady-state temperature as a function of normalized interface position for a cylindrical specimen.

with the boundary condition
0 =12 (5.10)

We compare the results of a decoupled thermal problem to those of the fully coupled problem. The com-
parisons of the interfacial position and velocity are shown in Figs. 13 and 14, respectively. We note that the
total swelling time is longer for the fully coupled system which shows that the mechanical contribution acts
to retard the evolution of the interface and thus the phase transition. The evolution of the interface position
with time takes a sigmoidal shape, but we note that velocity of the interface is nearly constant over a large
percentage of the transition time.

5.2. Perturbed interface evolution

We next investigate the conditions for unstable growth of the interface by perturbing its initial geometry.
For illustrative purposes, we use

S(0) ={x:r=rs+pcos(ng)} (5.11)

——8—— thermal

0.8 [ \ —— coupled
& 0.6
~ L
I A

N
SN A"

200 400 600
t/T

Fig. 13. Evolution of normalized interfacial position with time. Results are obtained by solving a purely thermal and a fully coupled
system.
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Fig. 14. Evolution of normalized interfacial velocity with normalized time. Results are shown for a purely thermal and a fully coupled
system.

with r,/R=0.2, p/R=0.01, and n=5 (corresponding to a 5%, five-fold symmetric perturbation of a
circular interface centered about the axis of the specimen). We take the temperature on the boundary of

Fig. 15. Interface evolution in the reference configuration for various magnitudes of the normalized interfacial free-energy density
0. The dashed lines denote the surface of the gel specimen in the reference configuration. (a) o/c,L = 0.0002, At/T =17.96.
(b) a/c0,L =0.002, At/ T = 8.70. (¢) 6/c0,L =0.004, At/T =8.92.
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the specimen to be ® = 2.0. As a result, the interface evolves toward the free surface of the specimen while
the swollen phase transitions to the collapsed phase. For the chosen values, we find that a 30 x 120 mesh
yields sufficiently converged results.

We investigate the influence of the interfacial free-energy density ¢ on the evolution of the interface. In
order to show more influence of the change of surface tension on the unstable growth of the interface, we
scale the mechanical parameters p, and 4, by 1/100. We also decrease the interfacial mobility to M = 1.0 to
stabilize the front in the case when a relatively small ¢ is used. The results are presented in Fig. 15 for var-
ious magnitudes of the dimensionless interfacial free-energy density ¢ with the other dimensionless material
parameters fixed at those given in Table 1. In each case, the geometry of the interface in the reference con-
figuration is shown at equally spaced time intervals. For a relatively small magnitude of ¢ = 0.0002, the
perturbation of the interface is observed to increase with time. Larger values of the interfacial free-energy
density both decrease the average velocity of the interface and stabilize the perturbation. The results indi-
cate the sensitivity of the interface evolution to the interfacial free-energy density, a phenomena commonly
observed in other processes such as dendritic solidification.

0.2 i

/

015 —=— o/6,L =0.0002
- —bee G/c6,L =0.002
—&— 0/c0,L = 0.00a

= 01k 7

; /
0.05f // ?j
&
0 i ] cocz®
20 40 60 80
t/T

Fig. 16. Deviation d from the average radius as a function of normalized time for different values of the normalized interfacial free-
energy density o/c0,L.

Fig. 17. Deformed meshes at (left) the initial time and (right) a final time for the perturbed interface problem with free-energy density
a/cl,L = 0.0002.
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We define the measure

2
fs(” — Fav) da

s rﬁvg da ’
as an indicator for the deviation from the average radius r,y,. Fig. 16 shows the evolution in d with nor-
malized time for various values of . We observe that the perturbation in the geometry is better contained
by larger interfacial free-energy densities.

Finally, we find it illustrative to compare the deformed configurations at initial and final stages of per-
turbed interface evolution in Fig. 17. As the collapsed phase grows at the expense of the swollen, the overall
specimen dimensions decrease. Moreover, the perturbed interface geometry gives rise to a pattern that can
clearly be observed on the surface of the specimen as shown in the figure.

d = (5.12)

6. Summary and concluding remarks

In this paper, we presented a sharp interface model to describe the thermally induced swelling of stim-
ulus—responsive hydrogels. This model is built upon the work of Gurtin and Voorhees (1993) and incorpo-
rates our previous efforts for chemically induced swelling (Dolbow et al., 2004). The model considers the
coupled effects of thermal transport and force balance and their influence on the motion of a sharp interface
separating swollen and collapsed gel phases. We view this as an important step toward the development of a
more complete theory incorporating heat and mass transport and their coupling with the stress response in
SRHs.

After stating the kinematic assumptions and fundamental balance laws, we provided constitutive equa-
tions appropriate for gel-like substances. An operator split was then developed to decouple the resulting
mechanical and thermal evolution equations and these equations were recast in equivalent variational
forms. Enriched approximations to the motion and temperature fields were used to capture discontinuities
at the phase interface without remeshing. The interface was represented as the zero-level set of some func-
tion and a simplified strategy was employed to solve the non-linear advection equation for that function.
Domain integral approximations were used to evaluate the interfacial quantities including the driving trac-
tion, heat flux, and geometric descriptors of the interface. We presented results from simulations of the
swelling kinetics of spherical and cylindrical gel specimens. Our model was found to be able to predict dif-
ferent threshold temperatures for swollen — collapsed and collapsed — swollen transitions in agreement
with experimental observations.
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